首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3554篇
  免费   828篇
  国内免费   1835篇
测绘学   55篇
大气科学   1491篇
地球物理   615篇
地质学   1301篇
海洋学   2227篇
天文学   19篇
综合类   215篇
自然地理   294篇
  2024年   13篇
  2023年   64篇
  2022年   161篇
  2021年   186篇
  2020年   208篇
  2019年   223篇
  2018年   212篇
  2017年   240篇
  2016年   213篇
  2015年   189篇
  2014年   298篇
  2013年   361篇
  2012年   211篇
  2011年   235篇
  2010年   186篇
  2009年   296篇
  2008年   317篇
  2007年   337篇
  2006年   288篇
  2005年   268篇
  2004年   214篇
  2003年   236篇
  2002年   187篇
  2001年   166篇
  2000年   147篇
  1999年   125篇
  1998年   104篇
  1997年   86篇
  1996年   61篇
  1995年   64篇
  1994年   76篇
  1993年   52篇
  1992年   45篇
  1991年   32篇
  1990年   24篇
  1989年   28篇
  1988年   23篇
  1987年   11篇
  1986年   9篇
  1985年   7篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有6217条查询结果,搜索用时 328 毫秒
991.
Increases in the frequency and magnitude of extreme water levels and storm surges are correlated with known indices of climatic variability (CV), including the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), along some areas of the British Columbia coast. Since a shift to a positive PDO regime in 1977, the effects of ENSO events have been more frequent, persistent, and intense. Teleconnected impacts include more frequent storms, higher surges, and enhanced coastal erosion. The response of oceanographic forcing mechanisms (i.e. tide, surge, wave height, wave period) to CV events and their role in coastal erosion remain unclear, particularly in western Canada. As a first step in exploring the interactions between ocean–atmosphere forcing and beach–dune responses, this paper assembles the historic erosive total water level (TWL) regime and explores relations with observed high magnitude storms that have occurred in the Tofino‐Ucluelet region (Wickaninnish Bay) on the west coast of Vancouver Island, British Columbia, Canada. Extreme events where TWL exceeded an erosional threshold (i.e. elevation of the beach–foredune junction) of 5·5 m aCD are examined to identify dominant forcing mechanisms and to classify a regime that describes erosive events driven principally by wave conditions (61·5%), followed by surge (21·8%), and tidal (16·7%) effects. Furthermore, teleconnections between regional CV phenomena, extreme storm events and, by association, coastal erosion, are explored. Despite regional sea level rise (eustatic and steric), rapid crustal uplift rates have resulted in a falling relative sea level and, in some sedimentary systems, shoreline progradation at rates approaching +1·5 m a–1 over recent decades. Foredune erosion occurs locally with a recurrence interval of approximately 1·53 years followed by rapid rebuilding due to high onshore sand supply and often in the presence of large woody debris and rapidly colonizing vegetation in the backshore. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
992.
Abstract

The multi-layered Jeffara de Gabes aquifer system is greatly influenced by tectonics. This system is limited at the base and laterally by evaporite layers and has lateral contacts with the sebkhas (salt flats). The groundwater in this aquifer is characterized by high salinity (3–10 g L-1). Multivariate statistical analysis and a geochemical approach were applied to determine the influence of the evaporite layers and sebkhas on the hydrochemical quality of the Jeffara de Gabes aquifer, and to understand the processes governing its salinity. According to these methods, and based in part on the Sr2+/Ca2+ ratio, it is demonstrated that the strong salinity of the groundwater is due to interactions between water and the evaporite layers that act as a substratum of this aquifer, as well as saltwater intrusion from the sebkhas. Moreover, the medium- to poor-quality groundwaters are characterized by geochemical interactions: cationic exchange and the precipitation/dissolution process of minerals in the aquifer formations.

Editeur Z.W. Kundzewicz

Citation Ben Alaya, M., Zemni, T., Mamou, A. et Zargouni, F., 2014. Acquisition de salinité et qualité des eaux d’une nappe profonde, Tunisie: approche statistique et géochimique. Hydrological Sciences Journal, 59 (2), 395–419.  相似文献   
993.
Abstract

Digital Ocean is a new research domain of Digital Earth. Because of the spatio-temporal, three-dimensional (3D) and intrinsically dynamic nature of ocean data, it is more difficult to make a breakthrough in this domain. The construction of the China Digital Ocean Prototype System (CDOPS) pushes Digital Ocean a step forward from its operation as a mere concept to its achievement as a realistic system. In this paper, the technical framework of the CDOPS is discussed, including its data, function, and application layers. Then, two key technologies are studied in detail that will enable the construction of the 3D ocean environment and the visualization of the ocean model output data. Practical demonstrations show that the CDOPS provides a technical reference for the development of Digital Ocean. This paper is based on an ongoing research project of the development of CDOPS that aims at the facilitation, integration, sharing, accessing, visualization, and use of the ocean data and model computing data from the Digital Earth perspective.  相似文献   
994.
众多研究表明,太平洋年代际振荡(PDO)与东亚季风以及我国气候的年代际异常存在显著影响,然而其影响途径及机制仍不明确.本文分别分析了年代际尺度上的太平洋年代际振荡(PDO)、南北半球际大气质量振荡(IHO)以及东亚季风的变化特征,据此建立了三者之间的关系,并进一步分析了它们对我国东部冬夏两季年代际气候异常的影响,所得主要结果包括:(1)PDO与IHO以及东亚季风强度具有明显的年代际波动特征,三者之间存在较好联系,其中它们在70年代和90年代后期处于负位相,而在80年代至90年代中期均处于正位相期.PDO和IHO对全球大范围的低层气温异常,以及大气质量迁移尤其是东半球30°S-50°N区域的质量变化具有显著并且空间一致的影响;(2)当PDO为正位相时,整层大气质量年代际异常呈偶极型的自东半球向西半球太平洋区域输出,造成了南北半球际以及海陆间大气质量迁移,同时引起Walker环流的上升和下沉支位置变化,以及越赤道大气质量流的向北异常输送,并由此建立起东亚季风与PDO和IHO之间的联系;(3)PDO年代际异常与冬夏季节蒙古地区地表气压变动存在密切联系.当PDO指数增强时,冬夏季850hPa均出现显著反气旋风场异常,并在我国东部形成异常北风,从而显著影响东亚冬夏季风强度变化.与之对应,PDO指数与我国东部大部分地区的站点气温、降水的年代际分量保持显著的同期相关.  相似文献   
995.
This study reveals that the interannual variability of the western edge of the western North Pacific (WNP) subtropical high (WNPSH) in early summer experienced an interdecadal decrease around 1990. Correspondingly, the zonal movement of the WNPSH and the zonal extension of the high-pressure anomaly over the WNP (WNPHA) in abnormal years possess smaller ranges after 1990. The different influences of the tropical SSTAs are important for this interdecadal change, which exhibit slow El Ni?o decaying pattern before 1990 while rapid transformation from El Ni?o to La Ni?a after 1990. The early summer tropical SSTAs and the relevant atmospheric circulation anomalies present obvious interdecadal differences. Before 1990, the warm SSTAs over the northern Indian Ocean and southern South China Sea favor the WNPHA through eastward-propagating Kelvin wave and meridional-vertical circulation, respectively. Meanwhile, the warm SSTA over the tropical central Pacific induces anomalous ascent to its northwest through the Gill response, which could strengthen the anomalous descent over the WNP through meridional-vertical circulation and further favor the eastward extension of the WNPHA to central Pacific. After 1990, the warm SSTAs over the Maritime Continent and northern Indian Ocean cause the WNPHA through meridional-vertical and zonal-vertical circulation, respectively. Overall, the anomalous warm SSTs and ascent and the resultant anomalous descent over the WNP are located more westward and southward after 1990 than before 1990. Consequently, the WNPHA features narrower zonal range and less eastward extension after 1990, corresponding to the interdecadal decease in the interannual variability of the western edge of the WNPSH. On the other hand, the dominant oscillation period of ENSO experienced an interdecadal reduction around 1990, contributing to the change of the El Ni?o SSTA associated with the anomalous WNPSH from slow decaying type to rapid transformation type.  相似文献   
996.
Precipitation isotope ratios (O and H) record the history of water phase transitions and fractionation processes during moisture transport and rainfall formation. Here, we evaluated the isotopic composition of precipitation over the central-southeastern region of Brazil at different timescales. Monthly isotopic compositions were associated with classical effects (rainfall amount, seasonality, and continentality), demonstrating the importance of vapor recirculation processes and different regional atmospheric systems (South American Convergence Zone-SACZ and Cold Fronts-CF). While moisture recycling and regional atmospheric processes may also be observed on a daily timescale, classical effects such as the amount effect were not strongly correlated (δ18O-precipitation rate r ≤ –0.37). Daily variability revealed specific climatic features, such as δ18O depleted values (~ –6‰ to –8‰) during the wet season were associated with strong convective activity and large moisture availability. Daily isotopic analysis revealed the role of different moisture sources and transport effects. Isotope ratios combined with d-excess explain how atmospheric recirculation processes interact with convective activity during rainfall formation processes. Our findings provide a new understanding of rainfall sampling timescales and highlight the importance of water isotopes to decipher key hydrometeorological processes in a complex spatial and temporal context in central-southeastern Brazil.  相似文献   
997.
Concurrence of low temperature,precipitation and freezing weather in an extensive area would cause devastating impacts on local economy and society.We call such a combination of concurrent disastrous weather“extensive coldprecipitation-freezing”events(ECPFEs).In this study,the ECPFEs in southern China(15°?35°N,102°?123°E)are objectively defined by using daily surface observational data for the period 1951?2013.An ECPFE in southern China is defined if the low temperature area,precipitation area and freezing area concurrently exceed their respective thresholds for at least three consecutive days.The identified ECPFEs are shown to be reasonable and reliable,compared with those in previous studies.The circulation anomalies in ECPFEs are characterized by a large-scale tilted ridge and trough pairing over mid-and high-latitude Eurasia,and the intensified subtropical westerlies along the southern foot of the Tibetan Plateau and the anomalous anticyclonic circulation over the subtropical western Pacific.Comparative analysis reveals that the stable cold air from the north and the warm and moist air from the south converge,facilitating a favorable environment for the concurrence of extensive low-temperature,precipitation and freezing weather.  相似文献   
998.
The record-breaking mei-yu in the Yangtze-Huaihe River valley (YHRV) in 2020 was characterized by an early onset, a delayed retreat, a long duration, a wide meridional rainbelt, abundant precipitation, and frequent heavy rainstorm processes. It is noted that the East Asian monsoon circulation system presented a significant quasi-biweekly oscillation (QBWO) during the mei-yu season of 2020 that was associated with the onset and retreat of mei-yu, a northward shift and stagnation of the rainbelt, and the occurrence and persistence of heavy rainstorm processes. Correspondingly, during the mei-yu season, the monsoon circulation subsystems, including the western Pacific subtropical high (WPSH), the upper-level East Asian westerly jet, and the low-level southwesterly jet, experienced periodic oscillations linked with the QBWO. Most notably, the repeated establishment of a large southerly center, with relatively stable latitude, led to moisture convergence and ascent which was observed to develop repeatedly. This was accompanied by a long-term duration of the mei-yu rainfall in the YHRV and frequent occurrences of rainstorm processes. Moreover, two blocking highs were present in the middle to high latitudes over Eurasia, and a trough along the East Asian coast was also active, which allowed cold air intrusions to move southward through the northwestern and/or northeastern paths. The cold air frequently merged with the warm and moist air from the low latitudes resulting in low-level convergence over the YHRV. The persistent warming in the tropical Indian Ocean is found to be an important external contributor to an EAP/PJ-like teleconnection pattern over East Asia along with an intensified and southerly displaced WPSH, which was observed to be favorable for excessive rainfall over YHRV.  相似文献   
999.
During June and July of 2020, the Yangtze River basin suffered from extreme mei-yu rainfall and catastrophic flooding. This study explores the seasonal predictability and associated dynamical causes for this extreme Yangtze River rainfall event, based on forecasts from the Met Office GloSea5 operational forecast system. The forecasts successfully predicted above-average rainfall over the Yangtze River basin, which arose from the successful reproduction of the anomalous western North Pacific subtropical high (WNPSH). Our results indicate that both the Indian Ocean warm sea surface temperature (SST) and local WNP SST gradient were responsible for the westward extension of the WNPSH, and the forecasts captured these tropical signals well. We explore extratropical drivers but find a large model spread among the forecast members regarding the meridional displacements of the East Asian mid-latitude westerly jet (EAJ). The forecast members with an evident southward displacement of the EAJ favored more extreme Yangtze River rainfall. However, the forecast Yangtze River rainfall anomaly was weaker compared to that was observed and no member showed such strong rainfall. In observations, the EAJ displayed an evident acceleration in summer 2020, which could lead to a significant wind convergence in the lower troposphere around the Yangtze River basin, and favor more mei-yu rainfall. The model forecast failed to satisfactorily reproduce these processes. This difference implies that the observed enhancement of the EAJ intensity gave a large boost to the Yangtze River rainfall, hindering a better forecast of the intensity of the event and disaster mitigation.  相似文献   
1000.
This paper describes the access to, and the content, characteristics, and potential applications of the tropical cyclone(TC) database that is maintained and actively developed by the China Meteorological Administration, with the aim of facilitating its use in scientific research and operational services. This database records data relating to all TCs that have passed through the western North Pacific(WNP) and South China Sea(SCS) since 1949. TC data collection has expanded over recent decades via continuous TC monitoring using remote sensing and specialized field detection techniques,allowing collation of a multi-source TC database for the WNP and SCS that covers a long period, with wide coverage and many observational elements. This database now comprises a wide variety of information related to TCs, such as historical or real-time locations(i.e., best track and landfall), intensity, dynamic and thermal structures, wind strengths, precipitation amounts, and frequency. This database will support ongoing research into the processes and patterns associated with TC climatic activity and TC forecasting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号